A parameter estimation framework for patient-specific hemodynamic computations

نویسندگان

  • Lucian Mihai Itu
  • Puneet Sharma
  • Tiziano Passerini
  • Ali Kamen
  • Constantin Suciu
  • Dorin Comaniciu
چکیده

a r t i c l e i n f o a b s t r a c t We propose a fully automated parameter estimation framework for performing patient-specific hemodynamic computations in arterial models. To determine the personalized values of the windkessel models, which are used as part of the geometrical multiscale circulation model, a parameter estimation problem is formulated. Clinical measurements of pressure and/or flow-rate are imposed as constraints to formulate a nonlinear system of equations, whose fixed point solution is sought. A key feature of the proposed method is a warm-start to the optimization procedure, with better initial solution for the nonlinear system of equations, to reduce the number of iterations needed for the calibration of the geometrical multiscale models. To achieve these goals, the initial solution, computed with a lumped parameter model, is adapted before solving the parameter estimation problem for the geometrical multiscale circulation model: the resistance and the compliance of the circulation model are estimated and compensated. The proposed framework is evaluated on a patient-specific aortic model, a full body arterial model, and multiple idealized anatomical models representing different arterial segments. For each case it leads to the best performance in terms of number of iterations required for the computational model to be in close agreement with the clinical measurements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Five-Parameter Distribution: Properties and Applications

In this paper, a new five-parameter lifetime and reliability distribution named “the exponentiated Uniform-Pareto distribution (EU-PD),” has been suggested that it has a bathtub-shaped and inverse bathtub-shape for modeling lifetime data. This distribution has applications in economics, actuarial modelling, reliability modeling, lifetime and biological sciences. Firstly, the mathematical and st...

متن کامل

CREDIBILISTIC PARAMETER ESTIMATION AND ITS APPLICATION IN FUZZY PORTFOLIO SELECTION

In this paper, a maximum likelihood estimation and a minimum entropy estimation for the expected value and variance of normal fuzzy variable are discussed within the framework of credibility theory. As an application, a credibilistic portfolio selection model is proposed, which is an improvement over the traditional models as it only needs the predicted values on the security returns instead of...

متن کامل

Development and implementation of a Monte Carlo frame work for evaluation of patient specific out- of - field organ equivalent dose

Background: The aim of this study was to develop and implement a Monte Carlo framework for evaluation of patient specific out-of-field organ equivalent dose (OED). Materials and Methods: Dose calculations were performed using a Monte Carlo-based model of Oncor linac and tomographic phantoms. Monte Carlo simulations were performed using EGSnrc user codes. Dose measurements were performed using r...

متن کامل

Estimation of Thermoelastic State of a Thermally Sensitive Functionally Graded Thick Hollow Cylinder: A Mathematical Model

The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent on temperature. The nonlinear heat conduction with temperature dependent thermal conductivity and specific heat capacity is reduced t...

متن کامل

Thorax organ dose estimation in computed tomography based on patient CT data using Monte Carlo simulation

Background:  This study presents patient specific and organ dose estimation in computed tomography (CT) imaging of thorax directly from patient CT image using Monte Carlo simulation.  Patient's CT image is considered as the patient specific phantom and the best representative of patient physical index in order to calculate specific organ dose. Materials and Methods: EGSnrc /BEAMnr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 281  شماره 

صفحات  -

تاریخ انتشار 2015